К верхней части документа
Cruze
   
Начальная страница GMDE Загрузить статическое содержание Загрузить динамическое содержание Справка?

Описание и принцип работы системы отопления, вентиляции и кондиционирования воздуха с ручным регулированием

Раздел описания и принципов работы системы подачи и регулировки температуры воздуха разделен на семь частей:

    • Компоненты управления системой отопления, вентиляции и кондиционирования воздуха
    • Скорость потока воздуха
    • Подача воздуха
    • Работа системы нагревания и кондиционирования
    • Работа системы рециркуляции
    • Охлаждающая жидкость двигателя
    • Цикл кондиционирования

Компоненты управления системой отопления, вентиляции и кондиционирования воздуха

Органы управления hvac

Панель управления системой ОВКВ содержит все переключатели, которые необходимы для контроля этой системы и являются интерфейсом между данной системой и оператором. Выбранные значения передаются к блоку управления системой отопления, вентиляции и кондиционирования по шине LIN-Bus.

Модуль управления системой отопления, вентиляции и кондиционирования

Блок управления системой отопления, вентиляции и кондиционирования является устройством gmlan, которое служит посредником между оператором и системой hvac. Эта система поддерживает и контролирует температуру и распределение воздуха в салоне. Цепь подачи напряжения от положительной клеммы аккумуляторной батареи обеспечивает модуль управления HVAC питанием, которое используется для энергонезависимой памяти. Если в цепи питания исчезнет напряжение, то все коды неисправности и настройки HVAC будут удалены из энергонезависимой памяти. Блок управления кузовным оборудованием (ВСМ), который определяет режим автомобиля, подает устройству сигнал на включение. Блок управления системой отопления, вентиляции и кондиционирования задает настройки вентилятора, режима распределения и температуры воздуха.

Блок управления системой отопления, вентиляции и кондиционирования поддерживает следующие функции:

Функция

Соответствие техническим требованиям

Продувка

Да

Персонализация

Да

Калибровка привода

Да

Привод режима

Привод изменения режима является 5-контактным шаговым двигателем. Блок управления HVAC подает опорное напряжение 12 В на шаговый двигатель и подает на соответствующие 4 катушки шаговых двигателей импульсный сигнал массы. Шаговый двигатель устанавливает заслонку режима в расчетное положение, чтобы достичь выбранного положения. На новом шаговом двигателе нужно выполнить калибровку нулевой точки. При калибровке шагового двигателя блок управления системой отопления, вентиляции и кондиционирования может подавать питание на определенные обмотки для достижения требуемого положения заслонки.

Привод температурного контроля

Привод регулировки температуры воздуха является 5-контактным шаговым двигателем. Блок управления HVAC подает опорное напряжение 12 В на шаговый двигатель и подает на соответствующие 4 катушки шаговых двигателей импульсный сигнал массы. Шаговый двигатель устанавливает заслонку воздушной смеси в расчетное положение, чтобы достичь выбранной температуры. На новом шаговом двигателе нужно выполнить калибровку нулевой точки. При калибровке шагового двигателя блок управления системой отопления, вентиляции и кондиционирования может подавать питание на определенные обмотки для достижения требуемого положения заслонки.

Исполнительный элемент системы рециркуляции

Привод рециркуляции является 5-контактным шаговым двигателем. Блок управления HVAC подает опорное напряжение 12 В на шаговый двигатель и подает на соответствующие 4 катушки шаговых двигателей импульсный сигнал массы. Шаговый двигатель устнавливает заслонку системы рециркуляции в расчетное положение, чтобы достичь требуемого положения. На новом шаговом двигателе нужно выполнить калибровку нулевой точки. При калибровке шагового двигателя блок управления системой отопления, вентиляции и кондиционирования может подавать питание на определенные обмотки для достижения требуемого положения заслонки.

Модуль управления дверями - Электровентилятор

Модуль управления двигателем вентилятора контролирует обороты двигателя вентилятора путем увеличения или уменьшения падения напряжения со стороны подключения массы к этому двигателю. Блок управления системой отопления, вентиляции и кондиционирования подает на модуль двигателя вентилятора со стороны подключения массы импульсы с широтно-импульсной модуляцией (ШИМ), которые поступают через цепь управления оборотами двигателя вентилятора. При поступлении запроса на увеличение оборотов вентилятора, блок управления системой отопления, вентиляции и кондиционирования увеличивает время, в течение которого сигнал оборотов модулирован на уровень массы. При поступлении запроса на уменьшение оборотов вентилятора, блок управления системой отопления, вентиляции и кондиционирования уменьшает время, в течение которого сигнал модулирован на уровень массы.

Датчик температуры испарителя

Датчик температуры испарителя представляет собой 2-проводной терморезистор с отрицательным температурным коэффициентом сопротивления. Датчик работает в пределах диапазона температур от -40 до +85°C (от -40 до +185°F). Этот датчик устанавливается на испаритель и измеряет его температуру. Если температура падает ниже 3°C (38°F), то компрессор будет отключаться для предотвращения замерзания испарителя.

Датчик давления хладагента системы кондиционирования воздуха

Датчик давления хладагента является 3-контактным пьезоэлектрическим датчиком. Для работы датчика необходима подключение опорного напряжения 5 В, низкого опорного напряжения и сигнальных цепей. Сигнал давления в системе кондиционирования может находиться в пределах 0,2-4,8 В. При падении давления значение сигнала будет приближаться к 0 В. При повышении давления значение сигнала будет выше 5 В. Модуль управления двигателем (ЕСМ) преобразовует сигнал напряжения в значение давления. При слишком высоком или слишком низком давлении блок ЕСМ не позволит включиться компрессору кондиционера.

Компрессор кондиционера

Компрессор кондиционера приводится ременной передачей через магнитную муфту. При нажатии на переключатель кондиционера блок HVAC отправляет сообщение с запросом на кондиционирование на блок ЕСМ через шину CAN-Bus. После этого блок ЕСМ подключает к массе управляющую цепь реле муфты компрессора, что приводит к активации реле муфты. Когда контакты реле замкнуты, напряжение от аккумуляторной батареи подается на муфту компрессора кондиционера. Муфта компрессора кондиционера активизируется.

Скорость потока воздуха

Переключатели управления вентилятором является частью системы отопления, вентиляции и кондиционирования (ОВКВ). Сигнал с выбранным значением позиции переключателя вентилятора направляется в блок управления системой отопления, вентиляции и кондиционирования (HVAC) по шине LIN.

Модуль управления двигателем представляет собой место сопряжения между блоком управления hvac и электродвигателем вентилятора. Модуль управления двигателем вентилятора регулирует цепи питающего напряжения и цепь массы двигателя вентилятора. Блок управления системой отопления, вентиляции и кондиционирования (HVAC) направляет сигнал PWM в модуль управления вентилятором для регуляции скорости двигателя вентилятора. Модуль управления двигателем вентилятора подает напряжение батареи на двигатель вентилятора и использует цепь массы в качестве регулирующей цепи сигнала низкого уровня для регуляции скорости двигателя вентилятора. Напряжение составляет 2-13 В и изменяется линейно с амплитудой сигнала PWM.

Подача воздуха

Блок управления системой отопления, вентиляции и кондиционирования (hvac) регулирует распределение воздуха при помощи привода рециркуляции и привода режима. Могут быть выбраны следующие режимы:

    • Разморозка
    • Устранение запотевания окна
    • Панель
    • Пол

Необходимый режим распределения можно выбрать при помощи переключателей распределения воздуха в системе отопления, вентиляции и кондиционирования (ОВКВ). Органы управления системой отопления, вентиляции и кондиционирования (ОВКВ) направляют параметры в блок управления ОВКВ по шине LIN. Модуль управления ОВКВ контролирует привод распределения воздуха, который ставит заслонку в расчитанное положение. В зависимости от положения заслонки, воздух поступает в различные трубки, ведущие к выходным отверстиям на комбинации приборов. При переводе заслонки режимов в позицию разморозки блок управления системой отопления, вентиляции и кондиционирования (HVAC) переключает привод рециркуляции на наружный обдув, что способствует устранению запотевания окна. При выборе режима разморозки двигатель вентилятора будет включаться независимо от температуры охлаждающей жидкости. Блок управления системой отопления, вентиляции и кондиционирования (НVAC) обеспечивает поступление больших объемов воздуха к передним вентиляторам разморозки. Система кондиционирования воздуха (А/С) может работать при любом режиме.

Устройство для устранения запотевания окна заднего вида не влияет на работу системы отопления, вентиляции и кондиционирования (hvac).

Работа системы нагревания и кондиционирования

Задачей системы обогрева и системы кондиционирования воздуха (А/С) является подача в салон автомобиля теплого или прохладного воздуха. Система кондиционирования воздуха (A/C) также устраняет запотевание с внутренней стороны окна и снижает запотевание лобового стекла. Независимо от температурных установок, на режим, при котором система отопления, вентиляции и кондиционирования (HVAC) достигает необходимой температуры, влияют следующие факторы:

    • Установка привода рециркуляции
    • Различия между температурой внутри салона и требуемой температурой
    • Установка скорости двигателя вентилятора
    • Установка режима

При нажатии на переключатель системы кондиционирования (a/c) блок управления системой отопления, вентиляции и кондиционирования (hvac) запрашивает включение компрессора a/c и включает светодиод переключателя a/c. Блок управления HVAC посылает команду на включение компрессора A/C в модуль управления двигателем (ECM). Модуль управления двигателем (ECM) обеспечит подключение на массу реле компрессора системы кондиционирования (A/C), позволив ему замкнуть свои внутренние контакты, чтобы подать напряжение батареи на обмотку муфты компрессора A/C. Диод компрессора системы кондиционирования (A/C) предотвращает появление в электрической системе автомобиля пика напряжения, возникающего при коллапсе магнитного поля обмотки при выключении компрессора.

Для включения компрессора a/c должны соблюдаться следующие условия:

    • Напряжение аккумуляторной батареи составляет 9-18 В.
    • Температура охлаждающей жидкости двигателя ниже 124°С (255°F).
    • Скорость вращения двигателя более 600 об/мин
    • Скорость вращения двигателя менее 5 500 об/мин
    • Давление на стороне высокого давления составляет 269-2 929 кПа (39-425 фунтов/кв.дюйм)
    • Положение дроссельной заслонки менее 100%
    • Температура испарителя выше 3°С (38°F)
    • ECM не обнаруживает излишней нагрузки крутящего момента
    • ECM не обнаруживает неудовлетворительных характеристик холостого хода
    • Температура окружающей среды свыше 1°С (34°F)

Модуль управления двигателем (ecm) использует информацию с датчика для определения следующего:

    • Давление на стороне нагнетания в системе кондиционирования (A/C)
    • Нагрузка системы кондиционирования (A/C) на двигатель
    • Тепловая нагрузка на конденсатор системы кондиционирования (А/С)

Воздух поступает в пассажирский отсек через радиатор обогревателя и сердечник испарителя. Исполнительный орган системы температурного контроля перемещает заслонку смешивания воздуха для уменьшения потока воздуха. Если необходимо повысить температуру внутри салона, заслонка смешивания воздуха устанавливается в положение, при котором через радиатор обогревателя проходит больший воздушный поток. Если необходимо снизить температуру внутри салона, заслонка смешивания воздуха устанавливается в положение, при котором через сердечник испарителя проходит больший воздушный поток.

Работа системы рециркуляции

Переключатель рециркуляции является частью системы отопления, вентиляции и кондиционирования воздуха (ОВКВ). Сигнал с выбранным положением переключателя рециркуляции направляется в блок управления системой отопления, вентиляции и кондиционирования (HVAC) по шине LIN. Блок управления HVAC контролирует поступление воздуха по приводу рециркуляции. Переключатель рециркуляции закрывает заслонку рециркуляции, чтобы воздух циркулировал в салоне автомобиля. При повторном включении переключателя рециркуляции заслонка рециркуляции открывается снова, чтобы наружный воздух поступил внутрь.

Рециркуляция включается, если не выбран режим разморозки. Если включен режим разморозки, привод рециркуляции открывает заслонку рециркуляции и наружный воздух начинает обдувать лобовое стекло, чтобы устранить запотевание.

Охлаждающая жидкость двигателя

Охлаждающая жидкость двигателя является необходимым элементом системы нагрева. Термостат контролирует нормальную рабочую температуру охлаждающей жидкости двигателя. Термостат также создает ограничения для системы охлаждения, которые способствуют положительному току охлаждающей жидкости и предотвращают образование кавитации.

Охлаждающая жидкость в сжатом состоянии поступает в радиатор обогревателя по впускному шлангу оборевателя. Радиатор обогревателя расположен внутри блока системы отопления, вентиляции и кондиционирования (HVAC). Поступающий через модуль системы отопления, вентиляции и кондиционирования (ОВКВ) наружный воздух снижает температуру охлаждающей жидкости, протекающей через радиатор обогревателя. Разогретый воздух поступает в пассажирский отсек через блок системы отопления, вентиляции и кондиционирования (HVAC) для создания комфортных условий для пассажира. Регуляция поступления тепла в пассажирский отсек регулируется при помощи открывания/закрывания температурных заслонок. Охлаждающая жидкость покидает радиатор обогревателя через возвратный шланг обогревателя и возвращается обратно в охлаждающую систему двигателя.

Цикл кондиционирования

Хладагент является ключевым элементом системы кондиционирования воздуха. R-134a является в настоящее время единственным хладагентом, одобренным Агентством по охране окружающей среды для автомобильного использования. R-134a является очень холодным газом, который уносит тепло и влагу из пассажирского отсека наружу.

Компрессор нагнетает давление, сжимающее газообразный хладагент. При сжатии хладагента также повышается его температура. Хладагент выходит из компрессора через выпускной шланг и под давлением поступает в конденсатор, а затем движется через балансир системы кондиционирования (A/C). Система кондиционирования (A/C) механически защищена клапаном сброса высокого давления. Если датчик давления хладагента системы кондиционирования (A/C) выйдет из строя или если давление хладагента будет продолжать нарастать в ограниченной системе хладагента, то клапан давления резко откроется и выпустит хладагент из системы.

Хладагент поступает в конденсатор с высокой температурой, в сильно сжатом газообразном состоянии. Когда хладагент проходит через конденсатор, его тепло передается проходящему через конденсатор наружному воздуху. При охлаждении хладагент конденсируется, т.е. переходит из газообразного состояния в жидкое.

Конденсатор расположен спереди от радиатора для обеспечения максимальной теплоотдачи. Конденсатор состоит из алюминиевой трубки и алюминиевых охлаждающих ребер, которые обеспечивают быструю передачу тепла хладагентом. Частично охлажденный жидкий хладагент выходит из конденсатора и поступает в ресивер-осушитель.

В ресивере-осушителе содержится влагопоглотитель, который поглощает влагу, образующуюся в системе хладагента. Ресивер-осушитель также служит в качестве емкости для хранения, которая обеспечивает поступление стабильного потока жидкости в расширительный клапан. Хладагент выходит из ресивера-осушителя и проходит по линии на расширительный клапан.

Расширительный клапан установлен в передней части приборной доски и закрепляется на впускных и выпускных трубах испарителя. Терморасширительный клапан является точкой разделения сторон высокого и низкого давления в системе кондиционирования. Когда хладагент проходит через расширительный клапан, давление хладагента понижается. Терморасширительный клапан также отмеряет количество жидкого хладагента, который может поступить в испаритель.

Хладагент покидает терморасширительный клапан и проходит в сердечник испарителя в несжатом жидком состоянии. Наружный воздух поступает через блок системы отопления, вентиляции и кондиционирования (HVAC) и проходит через сердечник испарителя. Теплый влажный воздух провоцирует закипание жидкого хладагента внутри сердечника испарителя. Кипящий хладагент поглощает тепло из наружного воздуха и несет влагу в испаритель. Хладагент покидает испаритель по линии всасывания, поступает обратно в компрессор системы кондиционирования в газообразном состоянии, совершая цикл понижения температуры в системе кондиционирования (A/C). В компрессоре системы кондиционирования (A/C) хладагент снова подвергается сжатию, и цикл понижения температуры повторяется снова.

Охлажденный воздух поступает через блок системы отопления, вентиляции и кондиционирования (hvac) в пассажирский отсек, создавая комфортные условия для пассажира. Тепло и влага, устраненные из пассажирского отсека, также изменяют агрегатное состояние (конденсируются) и удаляются из модуля системы отопления, вентиляции и кондиционирования (ОВКВ) в форме воды.

   


https://vnx.su/ 🛠 Руководства по ремонту и эксплуатации для автомобилей

Поиск по сайту

Остались вопросы или пожелания? Пишите на почту: support@vnx.su

Карта Сайта